Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 31 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 223 tok/s Pro
2000 character limit reached

Sustaining Moore's Law Through Inexactness (1705.01497v2)

Published 3 May 2017 in cs.CC and cs.DS

Abstract: Inexact computing aims to compute good solutions that require considerably less resource -- typically energy -- compared to computing exact solutions. While inexactness is motivated by concerns derived from technology scaling and Moore's law, there is no formal or foundational framework for reasoning about this novel approach to designing algorithms. In this work, we present a fundamental relationship between the quality of computing the value of a boolean function and the energy needed to compute it in a mathematically rigorous and general setting. On this basis, one can study the tradeoff between the quality of the solution to a problem and the amount of energy that is consumed. We accomplish this by introducing a computational model to classify problems based on notions of symmetry inspired by physics. We show that some problems are symmetric in that every input bit is, in a sense, equally important, while other problems display a great deal of asymmetry in the importance of input bits. We believe that our model is novel and provides a foundation for inexact Computing. Building on this, we show that asymmetric problems allow us to invest resources favoring the important bits -- a feature that can be leveraged to design efficient inexact algorithms. On the negative side and in contrast, we can prove that the best inexact algorithms for symmetric problems are no better than simply reducing the resource investment uniformly across all bits. Akin to classical theories concerned with space and time complexity, we believe the ability to classify problems as shown in our paper will serve as a basis for formally reasoning about the effectiveness of inexactness in the context of a range of computational problems with energy being the primary resource.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.