Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Algebras of quantum monodromy data and decorated character varieties (1705.01447v1)

Published 3 May 2017 in math.AG, math-ph, math.MP, math.QA, and nlin.SI

Abstract: The Riemann-Hilbert correspondence is an isomorphism between the de Rham moduli space and the Betti moduli space, defined by associating to each Fuchsian system its monodromy representation class. In 1997 Hitchin proved that this map is a symplectomorphism. In this paper, we address the question of what happens to this theory if we extend the de Rham moduli space by allowing connections with higher order poles. In our previous paper arXiv:1511.03851, based on the idea of interpreting higher order poles in the connection as boundary components with bordered cusps (vertices of ideal triangles in the Poincar\'e metric) on the Riemann surface, we introduced the notion of decorated character variety to generalize the Betti moduli space. This decorated character variety is the quotient of the space of representations of the fundamental groupid of arcs by a product of unipotent Borel sub-groups (one per bordered cusp). Here we prove that this representation space is endowed with a Poisson structure induced by the Fock--Rosly bracket and show that the quotient by unipotent Borel subgroups giving rise to the decorated character variety is a Poisson reduction. We deal with the Poisson bracket and its quantization simultaneously, thus providing a quantisation of the decorated character variety. In the case of dimension 2, we also endow the representation space with explicit Darboux coordinates. We conclude with a conjecture on the extended Riemann-Hilbert correspondence in the case of higher order poles.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.