Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-linear Associative-Commutative Many-to-One Pattern Matching with Sequence Variables (1705.00907v1)

Published 2 May 2017 in cs.SC

Abstract: Pattern matching is a powerful tool which is part of many functional programming languages as well as computer algebra systems such as Mathematica. Among the existing systems, Mathematica offers the most expressive pattern matching. Unfortunately, no open source alternative has comparable pattern matching capabilities. Notably, these features include support for associative and/or commutative function symbols and sequence variables. While those features have individually been subject of previous research, their comprehensive combination has not yet been investigated. Furthermore, in many applications, a fixed set of patterns is matched repeatedly against different subjects. This many-to-one matching can be sped up by exploiting similarities between patterns. Discrimination nets are the state-of-the-art solution for many-to-one matching. In this thesis, a generalized discrimination net which supports the full feature set is presented. All algorithms have been implemented as an open-source library for Python. In experiments on real world examples, significant speedups of many-to-one over one-to-one matching have been observed.

Citations (8)

Summary

We haven't generated a summary for this paper yet.