Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex cocompact actions in real projective geometry (1704.08711v4)

Published 27 Apr 2017 in math.GT and math.GR

Abstract: We study a notion of convex cocompactness for discrete subgroups of the projective general linear group acting (not necessarily irreducibly) on real projective space, and give various characterizations. A convex cocompact group in this sense need not be word hyperbolic, but we show that it still has some of the good properties of classical convex cocompact subgroups in rank-one Lie groups. Extending our earlier work arXiv:1701.09136 from the context of projective orthogonal groups, we show that for word hyperbolic groups preserving a properly convex open set in projective space, the above general notion of convex cocompactness is equivalent to a stronger convex cocompactness condition studied by Crampon-Marquis, and also to the condition that the natural inclusion be a projective Anosov representation. We investigate examples.

Citations (54)

Summary

We haven't generated a summary for this paper yet.