Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling and replicating statistical topology, and evidence for CMB non-homogeneity (1704.08248v1)

Published 26 Apr 2017 in stat.ME, stat.AP, and stat.OT

Abstract: Under the banner of Big Data', the detection and classification of structure in extremely large, high dimensional, data sets, is, one of the central statistical challenges of our times. Among the most intriguing approaches to this challenge isTDA', or `Topological Data Analysis', one of the primary aims of which is providing non-metric, but topologically informative, pre-analyses of data sets which make later, more quantitative analyses feasible. While TDA rests on strong mathematical foundations from Topology, in applications it has faced challenges due to an inability to handle issues of statistical reliability and robustness and, most importantly, in an inability to make scientific claims with verifiable levels of statistical confidence. We propose a methodology for the parametric representation, estimation, and replication of persistence diagrams, the main diagnostic tool of TDA. The power of the methodology lies in the fact that even if only one persistence diagram is available for analysis -- the typical case for big data applications -- replications can be generated to allow for conventional statistical hypothesis testing. The methodology is conceptually simple and computationally practical, and provides a broadly effective statistical procedure for persistence diagram TDA analysis. We demonstrate the basic ideas on a toy example, and the power of the approach in a novel and revealing analysis of CMB non-homogeneity.

Summary

We haven't generated a summary for this paper yet.