Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the expected diameter, width, and complexity of a stochastic convex-hull (1704.07028v2)

Published 24 Apr 2017 in cs.CG

Abstract: We investigate several computational problems related to the stochastic convex hull (SCH). Given a stochastic dataset consisting of $n$ points in $\mathbb{R}d$ each of which has an existence probability, a SCH refers to the convex hull of a realization of the dataset, i.e., a random sample including each point with its existence probability. We are interested in computing certain expected statistics of a SCH, including diameter, width, and combinatorial complexity. For diameter, we establish the first deterministic 1.633-approximation algorithm with a time complexity polynomial in both $n$ and $d$. For width, two approximation algorithms are provided: a deterministic $O(1)$-approximation running in $O(n{d+1} \log n)$ time, and a fully polynomial-time randomized approximation scheme (FPRAS). For combinatorial complexity, we propose an exact $O(nd)$-time algorithm. Our solutions exploit many geometric insights in Euclidean space, some of which might be of independent interest.

Citations (8)

Summary

We haven't generated a summary for this paper yet.