Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coexistence and extinction for stochastic Kolmogorov systems (1704.06984v1)

Published 23 Apr 2017 in math.PR and q-bio.PE

Abstract: In recent years there has been a growing interest in the study of the dynamics of stochastic populations. A key question in population biology is to understand the conditions under which populations coexist or go extinct. Theoretical and empirical studies have shown that coexistence can be facilitated or negated by both biotic interactions and environmental fluctuations. We study the dynamics of $n$ populations that live in a stochastic environment and which can interact nonlinearly (through competition for resources, predator-prey behavior, etc.). Our models are described by $n$-dimensional Kolmogorov systems with white noise (stochastic differential equations - SDE). We give sharp conditions under which the populations converge exponentially fast to their unique stationary distribution as well as conditions under which some populations go extinct exponentially fast. The analysis is done by a careful study of the properties of the invariant measures of the process that are supported on the boundary of the domain. To our knowledge this is one of the first general results describing the asymptotic behavior of stochastic Kolmogorov systems in non-compact domains. We are able to fully describe the properties of many of the SDE that appear in the literature. In particular, we extend results on two dimensional Lotka-Volterra models, two dimensional predator-prey models, $n$ dimensional simple food chains, and two predator and one prey models. We also show how one can use our methods to classify the dynamics of any two-dimensional stochastic Kolmogorov system satisfying some mild assumptions.

Summary

We haven't generated a summary for this paper yet.