Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proximal Nerve Complexes. A Computational Topology Approach (1704.05909v1)

Published 22 Mar 2017 in cs.CG

Abstract: This article introduces a theory of proximal nerve complexes and nerve spokes, restricted to the triangulation of finite regions in the Euclidean plane. A nerve complex is a collection of filled triangles with a common vertex, covering a finite region of the plane. Structures called $k$-spokes, $k\geq 1$, are a natural extension of nerve complexes. A $k$-spoke is the union of a collection of filled triangles that pairwise either have a common edge or a common vertex. A consideration of the closeness of nerve complexes leads to a proximal view of simplicial complexes. A practical application of proximal nerve complexes is given, briefly, in terms of object shape geometry in digital images.

Citations (9)

Summary

We haven't generated a summary for this paper yet.