Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

An Upper Bound Estimate and Stability for the Global Error of Numerical Integration Using Double Exponential Transformation (1704.05749v1)

Published 18 Apr 2017 in math.GM

Abstract: The double exponential formula was introduced for calculating definite integrals with singular point oscillation functions and Fourier integral. The double exponential transformation is not only useful for numerical computations but it is also used in different methods of Sinc theory. In this paper we give an upper bound estimate for the error of double exponential transformation. By improving integral estimates having singular final points, in theorem 1 we prove that the method is convergent and the rate of convergence is $\mathcal{O}(h2)$ where h is a step size. Our main tool in the proof is DE formula in Sinc theory. The advantage of our method is that the time and space complexity is drastically reduced. Furthermore, we discovered upper bound error in DE formula independent of N truncated number, as a matter of fact we proved stability. Numerical tests are presented to verify the theoretical predictions and confirm the convergence of the numerical solution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.