Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extractive Summarization: Limits, Compression, Generalized Model and Heuristics (1704.05550v1)

Published 18 Apr 2017 in cs.CL and cs.IR

Abstract: Due to its promise to alleviate information overload, text summarization has attracted the attention of many researchers. However, it has remained a serious challenge. Here, we first prove empirical limits on the recall (and F1-scores) of extractive summarizers on the DUC datasets under ROUGE evaluation for both the single-document and multi-document summarization tasks. Next we define the concept of compressibility of a document and present a new model of summarization, which generalizes existing models in the literature and integrates several dimensions of the summarization, viz., abstractive versus extractive, single versus multi-document, and syntactic versus semantic. Finally, we examine some new and existing single-document summarization algorithms in a single framework and compare with state of the art summarizers on DUC data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Rakesh Verma (11 papers)
  2. Daniel Lee (45 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.