Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition (1704.05528v1)

Published 14 Apr 2017 in cs.NA

Abstract: In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (R3SVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the R3SVD algorithm to a recycling rank revealing randomized singular value decomposition (R4SVD) algorithm by reusing the left singular vectors obtained from the previous iteration as the approximate basis in the current iteration, where the computational cost for partial SVD at each SVT iteration is significantly reduced. A simulated annealing style cooling mechanism is employed to adaptively adjust the low-rank approximation precision threshold as SVT progresses. Our fast SVT implementation is effective in both large and small matrices, which is demonstrated in matrix completion applications including image recovery and movie recommendation system.

Citations (20)

Summary

We haven't generated a summary for this paper yet.