Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Low-Complexity Approach to Distributed Cooperative Caching with Geographic Constraints (1704.04465v4)

Published 14 Apr 2017 in cs.NI, cs.IT, and math.IT

Abstract: We consider caching in cellular networks in which each base station is equipped with a cache that can store a limited number of files. The popularity of the files is known and the goal is to place files in the caches such that the probability that a user at an arbitrary location in the plane will find the file that she requires in one of the covering caches is maximized. We develop distributed asynchronous algorithms for deciding which contents to store in which cache. Such cooperative algorithms require communication only between caches with overlapping coverage areas and can operate in asynchronous manner. The development of the algorithms is principally based on an observation that the problem can be viewed as a potential game. Our basic algorithm is derived from the best response dynamics. We demonstrate that the complexity of each best response step is independent of the number of files, linear in the cache capacity and linear in the maximum number of base stations that cover a certain area. Then, we show that the overall algorithm complexity for a discrete cache placement is polynomial in both network size and catalog size. In practical examples, the algorithm converges in just a few iterations. Also, in most cases of interest, the basic algorithm finds the best Nash equilibrium corresponding to the global optimum. We provide two extensions of our basic algorithm based on stochastic and deterministic simulated annealing which find the global optimum. Finally, we demonstrate the hit probability evolution on real and synthetic networks numerically and show that our distributed caching algorithm performs significantly better than storing the most popular content, probabilistic content placement policy and Multi-LRU caching policies.

Citations (35)

Summary

We haven't generated a summary for this paper yet.