Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a Distributed Approach for Density-based Clustering (1704.04302v1)

Published 13 Apr 2017 in cs.DB

Abstract: Efficient extraction of useful knowledge from these data is still a challenge, mainly when the data is distributed, heterogeneous and of different quality depending on its corresponding local infrastructure. To reduce the overhead cost, most of the existing distributed clustering approaches generate global models by aggregating local results obtained on each individual node. The complexity and quality of solutions depend highly on the quality of the aggregation. In this respect, we proposed for distributed density-based clustering that both reduces the communication overheads due to the data exchange and improves the quality of the global models by considering the shapes of local clusters. From preliminary results we show that this algorithm is very promising.

Citations (3)

Summary

We haven't generated a summary for this paper yet.