Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representing operational semantics with enriched Lawvere theories (1704.03080v1)

Published 10 Apr 2017 in cs.LO

Abstract: Many term calculi, like lambda calculus or pi calculus, involve binders for names, and the mathematics of bound variable names is subtle. Schoenfinkel introduced the SKI combinator calculus in 1924 to clarify the role of quantified variables in intuitionistic logic by eliminating them. Yoshida demonstrated how to eliminate the bound names coming from the input prefix in the asynchronous pi calculus, but her combinators still depend on the new operator to bind names. Recently, Meredith and Stay showed how to modify Yoshida's combinators by replacing new and replication with reflective operators to provide the first combinator calculus with no bound names into which the asynchronous pi calculus has a faithful embedding. Here we provide an alternative set of combinators built from SKI plus reflection that also eliminates all nominal phenomena, yet provides a faithful embedding of a reflective higher-order pi calculus. We show that with the nominal features effectively eliminated as syntactic sugar, multisorted Lawvere theories enriched over graphs suffice to capture the operational semantics of the calculus.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com