Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A MALL Geometry of Interaction Based on Indexed Linear Logic (1704.02711v4)

Published 10 Apr 2017 in cs.LO

Abstract: We construct a geometry of interaction (GoI: dynamic modeling of Gentzen-style cut elimination) for multiplicative-additive linear logic (MALL) by employing Bucciarelli-Ehrhard indexed linear logic MALL(I) to handle the additives. Our construction is an extension to the additives of the Haghverdi-Scott categorical formulation (a multiplicative GoI situation in a traced monoidal category) for Girard's original GoI 1. The indices are shown to serve not only in their original denotational level, but also at a finer grained dynamic level so that the peculiarities of additive cut elimination such as superposition, erasure of subproofs, and additive (co-) contraction can be handled with the explicit use of indices. Proofs are interpreted as indexed subsets in the category Rel, but without the explicit relational composition; instead, execution formulas are run pointwise on the interpretation at each index, w.r.t symmetries of cuts, in a traced monoidal category with a reflexive object and a zero morphism. The sets of indices diminish overall when an execution formula is run, corresponding to the additive cut-elimination procedure (erasure), and allowing recovery of the relational composition. The main theorem is the invariance of the execution formulas along cut elimination so that the formulas converge to the denotations of (cut-free) proofs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.