Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Connections between Mean-Field Game and Social Welfare Optimization (1703.10211v8)

Published 29 Mar 2017 in math.OC

Abstract: This paper studies the connection between a class of mean-field games and a social welfare optimization problem. We consider a mean-field game in function spaces with a large population of agents, and each agent seeks to minimize an individual cost function. The cost functions of different agents are coupled through a mean-field term that depends on the mean of the population states. We show that although the mean-field game is not a potential game, under some mild condition the $\epsilon$-Nash equilibrium of the mean-field game coincides with the optimal solution to a social welfare optimization problem, and this is true even when the individual cost functions are non-convex. The connection enables us to evaluate and promote the efficiency of the mean-field equilibrium. In addition, it also leads to several important implications on the existence, uniqueness, and computation of the mean-field equilibrium. Numerical results are presented to validate the solution, and examples are provided to show the applicability of the proposed approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (3)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube