Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Gaussian process approximation for Bayesian inference with expensive likelihood functions (1703.09930v4)

Published 29 Mar 2017 in stat.CO and stat.ML

Abstract: We consider Bayesian inference problems with computationally intensive likelihood functions. We propose a Gaussian process (GP) based method to approximate the joint distribution of the unknown parameters and the data. In particular, we write the joint density approximately as a product of an approximate posterior density and an exponentiated GP surrogate. We then provide an adaptive algorithm to construct such an approximation, where an active learning method is used to choose the design points. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for Bayesian computation.

Citations (57)

Summary

We haven't generated a summary for this paper yet.