Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Convergence Property of Implicit Self-paced Objective (1703.09923v1)

Published 29 Mar 2017 in cs.AI

Abstract: Self-paced learning (SPL) is a new methodology that simulates the learning principle of humans/animals to start learning easier aspects of a learning task, and then gradually take more complex examples into training. This new-coming learning regime has been empirically substantiated to be effective in various computer vision and pattern recognition tasks. Recently, it has been proved that the SPL regime has a close relationship to a implicit self-paced objective function. While this implicit objective could provide helpful interpretations to the effectiveness, especially the robustness, insights under the SPL paradigms, there are still no theoretical results strictly proved to verify such relationship. To this issue, in this paper, we provide some convergence results on this implicit objective of SPL. Specifically, we prove that the learning process of SPL always converges to critical points of this implicit objective under some mild conditions. This result verifies the intrinsic relationship between SPL and this implicit objective, and makes the previous robustness analysis on SPL complete and theoretically rational.

Citations (14)

Summary

We haven't generated a summary for this paper yet.