Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

De Donder-Weyl Hamiltonian formalism of MacDowell-Mansouri gravity (1703.09755v2)

Published 28 Mar 2017 in gr-qc, hep-th, math-ph, and math.MP

Abstract: We analyse the behaviour of the MacDowell-Mansouri action with internal symmetry group $\mathrm{SO}(4,1)$ under the covariant Hamiltonian formulation. The field equations, known in this formalism as the De Donder-Weyl equations, are obtained by means of the graded Poisson-Gerstenhaber bracket structure present within the covariant formulation. The decomposition of the internal algebra $\mathfrak{so}(4,1)\simeq\mathfrak{so}(3,1)\oplus\mathbb{R}{3,1}$ allows the symmetry breaking $\mathrm{SO}(4,1)\to\mathrm{SO}(3,1)$, which reduces the original action to the Palatini action without the topological term. We demonstrate that, in contrast to the Lagrangian approach, this symmetry breaking can be performed indistinctly in the covariant Hamiltonian formalism either before or after the variation of the De Donder-Weyl Hamiltonian has been done, recovering Einstein's equations via the Poisson-Gerstenhaber bracket.

Summary

We haven't generated a summary for this paper yet.