Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ruling out FPT algorithms for Weighted Coloring on forests (1703.09726v1)

Published 28 Mar 2017 in cs.DS, cs.CC, and math.CO

Abstract: Given a graph $G$, a proper $k$-coloring of $G$ is a partition $c = (S_i){i\in [1,k]}$ of $V(G)$ into $k$ stable sets $S_1,\ldots, S{k}$. Given a weight function $w: V(G) \to \mathbb{R}+$, the weight of a color $S_i$ is defined as $w(i) = \max_{v \in S_i} w(v)$ and the weight of a coloring $c$ as $w(c) = \sum_{i=1}{k}w(i)$. Guan and Zhu [Inf. Process. Lett., 1997] defined the weighted chromatic number of a pair $(G,w)$, denoted by $\sigma(G,w)$, as the minimum weight of a proper coloring of $G$. For a positive integer $r$, they also defined $\sigma(G,w;r)$ as the minimum of $w(c)$ among all proper $r$-colorings $c$ of $G$. The complexity of determining $\sigma(G,w)$ when $G$ is a tree was open for almost 20 years, until Ara\'ujo et al. [SIAM J. Discrete Math., 2014] recently proved that the problem cannot be solved in time $n{o(\log n)}$ on $n$-vertex trees unless the Exponential Time Hypothesis (ETH) fails. The objective of this article is to provide hardness results for computing $\sigma(G,w)$ and $\sigma(G,w;r)$ when $G$ is a tree or a forest, relying on complexity assumptions weaker than the ETH. Namely, we study the problem from the viewpoint of parameterized complexity, and we assume the weaker hypothesis $FPT \neq W[1]$. Building on the techniques of Ara\'ujo et al., we prove that when $G$ is a forest, computing $\sigma(G,w)$ is $W[1]$-hard parameterized by the size of a largest connected component of $G$, and that computing $\sigma(G,w;r)$ is $W[2]$-hard parameterized by $r$. Our results rule out the existence of $FPT$ algorithms for computing these invariants on trees or forests for many natural choices of the parameter.

Citations (4)

Summary

We haven't generated a summary for this paper yet.