Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The $r$th moment of the divisor function: an elementary approach (1703.08785v2)

Published 26 Mar 2017 in math.NT

Abstract: Let $\tau(n)$ be the number of divisors of $n$. We give an elementary proof of the fact that $$ \sum_{n\le x} \tau(n)r =xC_{r} (\log x){2r-1}+O(x(\log x){2r-2}), $$ for any integer $r\ge 2$. Here, $$ C_{r}=\frac{1}{(2r-1)!} \prod_{p\ge 2}\left( \left(1-\frac{1}{p}\right){2r} \left(\sum_{\alpha\ge 0} \frac{(\alpha+1)r}{p{\alpha}}\right)\right). $$

Summary

We haven't generated a summary for this paper yet.