Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending Growth Mixture Models Using Continuous Non-Elliptical Distributions (1703.08723v2)

Published 25 Mar 2017 in stat.ME, stat.AP, and stat.CO

Abstract: Growth mixture models (GMMs) incorporate both conventional random effects growth modeling and latent trajectory classes as in finite mixture modeling; therefore, they offer a way to handle the unobserved heterogeneity between subjects in their development. GMMs with Gaussian random effects dominate the literature. When the data are asymmetric and/or have heavier tails, more than one latent class is required to capture the observed variable distribution. Therefore, a GMM with continuous non-elliptical distributions is proposed to capture skewness and heavier tails in the data set. Specifically, multivariate skew-t distributions and generalized hyperbolic distributions are introduced to extend GMMs. When extending GMMs, four statistical models are considered with differing distributions of measurement errors and random effects. The mathematical development of GMMs with non-elliptical distributions relies on their expression as normal variance-mean mixtures and the resultant relationship with the generalized inverse Gaussian distribution. Parameter estimation is outlined within the expectation-maximization framework before the performance of our GMMs with non-elliptical distributions is illustrated on simulated and real data.

Summary

We haven't generated a summary for this paper yet.