Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

The Fractal Dimension of Interfaces in Edwards-Anderson and Long-range Ising Spin Glasses: Determining the Applicability of Different Theoretical Descriptions (1703.08679v2)

Published 25 Mar 2017 in cond-mat.dis-nn

Abstract: The fractal dimension of excitations in glassy systems gives information on the critical dimension at which the droplet picture of spin glasses changes to a description based on replica symmetry breaking where the interfaces are space filling. Here, the fractal dimension of domain-wall interfaces is studied using the strong-disorder renormalization group method pioneered by Monthus [Fractals 23, 1550042 (2015)] both for the Edwards-Anderson spin-glass model in up to 8 space dimensions, as well as for the one-dimensional long-ranged Ising spin-glass with power-law interactions. Analyzing the fractal dimension of domain walls, we find that replica symmetry is broken in high-enough space dimensions. Because our results for high-dimensional hypercubic lattices are limited by their small size, we have also studied the behavior of the one-dimensional long-range Ising spin-glass with power-law interactions. For the regime where the power of the decay of the spin-spin interactions with their separation distance corresponds to 6 and higher effective space dimensions, we find again the broken replica symmetry result of space filling excitations. This is not the case for smaller effective space dimensions. These results show that the dimensionality of the spin glass determines which theoretical description is appropriate. Our results will also be of relevance to the Gardner transition of structural glasses.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.