General Boundary Value Problems of the Korteweg-de Vries Equation on a Bounded Domain (1703.08154v1)
Abstract: In this paper we consider the initial boundary value problem of the Korteweg-de Vries equation posed on a finite interval \begin{equation} u_t+u_x+u_{xxx}+uu_x=0,\qquad u(x,0)=\phi(x), \qquad 0<x<L, \ t\>0 \qquad (1) \end{equation} subject to the nonhomogeneous boundary conditions, \begin{equation} B_1u=h_1(t), \qquad B_2 u= h_2 (t), \qquad B_3 u= h_3 (t) \qquad t>0 \qquad (2) \end{equation} where [ B_i u =\sum {j=0}2 \left(a{ij} \partial j_x u(0,t) + b_{ij} \partial j_x u(L,t)\right), \qquad i=1,2,3,] and $a_{ij}, \ b_{ij}$ $ (j,i=0, 1,2,3)$ are real constants. Under some general assumptions imposed on the coefficients $a_{ij}, \ b_{ij}$, $ j,i=0, 1,2,3$, the IBVPs (1)-(2) is shown to be locally well-posed in the space $Hs (0,L)$ for any $s\geq 0$ with $\phi \in Hs (0,L)$ and boundary values $h_j, j=1,2,3$ belonging to some appropriate spaces with optimal regularity.