Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal lower bounds for universal relation, samplers, and finding duplicates (1703.08139v1)

Published 23 Mar 2017 in cs.CC and cs.DS

Abstract: In the communication problem $\mathbf{UR}$ (universal relation) [KRW95], Alice and Bob respectively receive $x$ and $y$ in ${0,1}n$ with the promise that $x\neq y$. The last player to receive a message must output an index $i$ such that $x_i\neq y_i$. We prove that the randomized one-way communication complexity of this problem in the public coin model is exactly $\Theta(\min{n, \log(1/\delta)\log2(\frac{n}{\log(1/\delta)})})$ bits for failure probability $\delta$. Our lower bound holds even if promised $\mathop{support}(y)\subset \mathop{support}(x)$. As a corollary, we obtain optimal lower bounds for $\ell_p$-sampling in strict turnstile streams for $0\le p < 2$, as well as for the problem of finding duplicates in a stream. Our lower bounds do not need to use large weights, and hold even if it is promised that $x\in{0,1}n$ at all points in the stream. Our lower bound demonstrates that any algorithm $\mathcal{A}$ solving sampling problems in turnstile streams in low memory can be used to encode subsets of $[n]$ of certain sizes into a number of bits below the information theoretic minimum. Our encoder makes adaptive queries to $\mathcal{A}$ throughout its execution, but done carefully so as to not violate correctness. This is accomplished by injecting random noise into the encoder's interactions with $\mathcal{A}$, which is loosely motivated by techniques in differential privacy. Our correctness analysis involves understanding the ability of $\mathcal{A}$ to correctly answer adaptive queries which have positive but bounded mutual information with $\mathcal{A}$'s internal randomness, and may be of independent interest in the newly emerging area of adaptive data analysis with a theoretical computer science lens.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com