Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lipschitz-free spaces over compact subsets of superreflexive spaces are weakly sequentially complete (1703.07896v2)

Published 23 Mar 2017 in math.FA

Abstract: Let $M$ be a compact subset of a superreflexive Banach space. We prove that the Lipschitz-free space $\mathcal{F}(M)$, the predual of the Banach space of Lipschitz functions on $M$, has the Pe{\l}czy\'nski's property ($V\ast$). As a consequence, the Lipschitz-free space $\mathcal{F}(M)$ is weakly sequentially complete.

Summary

We haven't generated a summary for this paper yet.