Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Tropical Superpotential For $\mathbb{P}^2$ (1703.07620v2)

Published 22 Mar 2017 in math.AG and math.CO

Abstract: We present an extended worked example of the computation of the tropical superpotential considered by Carl--Pumperla--Siebert. In particular we consider an affine manifold associated to the complement of a non-singular genus one plane curve, and calculate the wall and chamber decomposition determined by the Gross--Siebert algorithm. Using the results of Carl--Pumperla--Siebert we determine the tropical superpotential, via broken line counts, in every chamber of this decomposition. The superpotential defines a Laurent polynomial in every chamber, which we demonstrate to be identical to the Laurent polynomials predicted by Coates--Corti--Galkin--Golyshev--Kaspzryk to be mirror to $\mathbb{P}2$.

Summary

We haven't generated a summary for this paper yet.