Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Corecursive Algebras for Functors Preserving Coproducts (1703.07574v2)

Published 22 Mar 2017 in cs.LO

Abstract: For an endofunctor $H$ on a hyper-extensive category preserving countable coproducts we describe the free corecursive algebra on $Y$ as the coproduct of the final coalgebra for $H$ and the free $H$-algebra on $Y$. As a consequence, we derive that $H$ is a cia functor, i.e., its corecursive algebras are precisely the cias (completely iterative algebras). Also all functors $H(-) + Y$ are then cia functors. For finitary set functors we prove that, conversely, if $H$ is a cia functor, then it has the form $H = W \times (-) + Y$ for some sets $W$ and $Y$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.