Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incremental View Maintenance with Triple Lock Factorization Benefits (1703.07484v2)

Published 22 Mar 2017 in cs.DB

Abstract: We introduce F-IVM, a unified incremental view maintenance (IVM) approach for a variety of tasks, including gradient computation for learning linear regression models over joins, matrix chain multiplication, and factorized evaluation of conjunctive queries. F-IVM is a higher-order IVM algorithm that reduces the maintenance of the given task to the maintenance of a hierarchy of increasingly simpler views. The views are functions mapping keys, which are tuples of input data values, to payloads, which are elements from a task-specific ring. Whereas the computation over the keys is the same for all tasks, the computation over the payloads depends on the task. F-IVM achieves efficiency by factorizing the computation of the keys, payloads, and updates. We implemented F-IVM as an extension of DBToaster. We show in a range of scenarios that it can outperform classical first-order IVM, DBToaster's fully recursive higher-order IVM, and plain recomputation by orders of magnitude while using less memory.

Citations (2)

Summary

We haven't generated a summary for this paper yet.