Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interest-Driven Discovery of Local Process Models (1703.07116v1)

Published 21 Mar 2017 in cs.DB and cs.AI

Abstract: Local Process Models (LPM) describe structured fragments of process behavior occurring in the context of less structured business processes. Traditional LPM discovery aims to generate a collection of process models that describe highly frequent behavior, but these models do not always provide useful answers for questions posed by process analysts aiming at business process improvement. We propose a framework for goal-driven LPM discovery, based on utility functions and constraints. We describe four scopes on which these utility functions and constrains can be defined, and show that utility functions and constraints on different scopes can be combined to form composite utility functions/constraints. Finally, we demonstrate the applicability of our approach by presenting several actionable business insights discovered with LPM discovery on two real life data sets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.