Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Expansion of pinched hypersurfaces of the Euclidean and hyperbolic space by high powers of curvature (1703.07087v3)

Published 21 Mar 2017 in math.DG and math.AP

Abstract: We prove convergence results for expanding curvature flows in the Euclidean and hyperbolic space. The flow speeds have the form $F{-p}$, where $p>1$ and $F$ is a positive, strictly monotone and 1-homogeneous curvature function. In particular this class includes the mean curvature $F=H$. We prove that a certain initial pinching condition is preserved and the properly rescaled hypersurfaces converge smoothly to the unit sphere. We show that an example due to Andrews-McCoy-Zheng can be used to construct strictly convex initial hypersurfaces, for which the inverse mean curvature flow to the power $p>1$ loses convexity, justifying the necessity to impose a certain pinching condition on the initial hypersurface.

Summary

We haven't generated a summary for this paper yet.