Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulus consensus in discrete-time signed networks and properties of special recurrent inequalities (1703.06853v1)

Published 20 Mar 2017 in cs.SY, cs.MA, math.OC, and nlin.AO

Abstract: Recently the dynamics of signed networks, where the ties among the agents can be both positive (attractive) or negative (repulsive) have attracted substantial attention of the research community. Examples of such networks are models of opinion dynamics over signed graphs, recently introduced by Altafini (2012,2013) and extended to discrete-time case by Meng et al. (2014). It has been shown that under mild connectivity assumptions these protocols provide the convergence of opinions in absolute value, whereas their signs may differ. This "modulus consensus" may correspond to the polarization of the opinions (or bipartite consensus, including the usual consensus as a special case), or their convergence to zero. In this paper, we demonstrate that the phenomenon of modulus consensus in the discrete-time Altafini model is a manifestation of a more general and profound fact, regarding the solutions of a special recurrent inequality. Although such a recurrent inequality does not provide the uniqueness of a solution, it can be shown that, under some natural assumptions, each of its bounded solutions has a limit and, moreover, converges to consensus. A similar property has previously been established for special continuous-time differential inequalities (Proskurnikov, Cao, 2016). Besides analysis of signed networks, we link the consensus properties of recurrent inequalities to the convergence analysis of distributed optimization algorithms and the problems of Schur stability of substochastic matrices.

Citations (13)

Summary

We haven't generated a summary for this paper yet.