Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Defect prediction with bad smells in code (1703.06300v1)

Published 18 Mar 2017 in cs.SE

Abstract: Background: Defect prediction in software can be highly beneficial for development projects, when prediction is highly effective and defect-prone areas are predicted correctly. One of the key elements to gain effective software defect prediction is proper selection of metrics used for dataset preparation. Objective: The purpose of this research is to verify, whether code smells metrics, collected using Microsoft CodeAnalysis tool, added to basic metric set, can improve defect prediction in industrial software development project. Results: We verified, if dataset extension by the code smells sourced metrics, change the effectiveness of the defect prediction by comparing prediction results for datasets with and without code smells-oriented metrics. In a result, we observed only small improvement of effectiveness of defect prediction when dataset extended with bad smells metrics was used: average accuracy value increased by 0.0091 and stayed within the margin of error. However, when only use of code smells based metrics were used for prediction (without basic set of metrics), such process resulted with surprisingly high accuracy (0.8249) and F-measure (0.8286) results. We also elaborated data anomalies and problems we observed when two different metric sources were used to prepare one, consistent set of data. Conclusion: Extending the dataset by the code smells sourced metric does not significantly improve the prediction effectiveness. Achieved result did not compensate effort needed to collect additional metrics. However, we observed that defect prediction based on the code smells only is still highly effective and can be used especially where other metrics hardly be used.

Citations (3)

Summary

We haven't generated a summary for this paper yet.