Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Sketch Learning for Conditional Program Generation (1703.05698v5)

Published 16 Mar 2017 in cs.PL and cs.LG

Abstract: We study the problem of generating source code in a strongly typed, Java-like programming language, given a label (for example a set of API calls or types) carrying a small amount of information about the code that is desired. The generated programs are expected to respect a "realistic" relationship between programs and labels, as exemplified by a corpus of labeled programs available during training. Two challenges in such conditional program generation are that the generated programs must satisfy a rich set of syntactic and semantic constraints, and that source code contains many low-level features that impede learning. We address these problems by training a neural generator not on code but on program sketches, or models of program syntax that abstract out names and operations that do not generalize across programs. During generation, we infer a posterior distribution over sketches, then concretize samples from this distribution into type-safe programs using combinatorial techniques. We implement our ideas in a system for generating API-heavy Java code, and show that it can often predict the entire body of a method given just a few API calls or data types that appear in the method.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com