Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Lotka-Volterra food chains (1703.04809v1)

Published 14 Mar 2017 in math.PR and q-bio.PE

Abstract: We study the persistence and extinction of species in a simple food chain that is modelled by a Lotka-Volterra system with environmental stochasticity. There exist sharp results for deterministic Lotka-Volterra systems in the literature but few for their stochastic counterparts. The food chain we analyze consists of one prey and $n-1$ predators. The $j$th predator eats the $j-1$th species and is eaten by the $j+1$th predator; this way each species only interacts with at most two other species - the ones that are immediately above or below it in the trophic chain. We show that one can classify, based on an explicit quantity depending on the interaction coefficients of the system, which species go extinct and which converge to their unique invariant probability measure. Our work can be seen as a natural extension of the deterministic results of Gard and Hallam '79 to a stochastic setting. As one consequence we show that environmental stochasticity makes species more likely to go extinct. However, if the environmental fluctuations are small, persistence in the deterministic setting is preserved in the stochastic system. Our analysis also shows that the addition of a new apex predator makes, as expected, the different species more prone to extinction. Another novelty of our analysis is the fact that we can describe the behavior the system when the noise is degenerate. This is relevant because of the possibility of strong correlations between the effects of the environment on the different species.

Summary

We haven't generated a summary for this paper yet.