Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end Throughput Maximization for Underlay Multi-hop Cognitive Radio Networks with RF Energy Harvesting (1703.02742v1)

Published 8 Mar 2017 in cs.IT and math.IT

Abstract: This paper studies a green paradigm for the underlay coexistence of primary users (PUs) and secondary users (SUs) in energy harvesting cognitive radio networks (EH-CRNs), wherein battery-free SUs capture both the spectrum and the energy of PUs to enhance spectrum efficiency and green energy utilization. To lower the transmit powers of SUs, we employ multi-hop transmission with time division multiple access, by which SUs first harvest energy from the RF signals of PUs and then transmit data in the allocated time concurrently with PUs, all in the licensed spectrum. In this way, the available transmit energy of each SU mainly depends on the harvested energy before the turn to transmit, namely energy causality. Meanwhile, the transmit powers of SUs must be strictly controlled to protect PUs from harmful interference. Thus, subject to the energy causality constraint and the interference power constraint, we study the end-to-end throughput maximization problem for optimal time and power allocation. To solve this nonconvex problem, we first equivalently transform it into a convex optimization problem and then propose the joint optimal time and power allocation (JOTPA) algorithm that iteratively solves a series of feasibility problems until convergence. Extensive simulations evaluate the performance of EH-CRNs with JOTPA in three typical deployment scenarios and validate the superiority of JOTPA by making comparisons with two other resource allocation algorithms.

Citations (127)

Summary

We haven't generated a summary for this paper yet.