Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Absence of chaos in Digital Memcomputing Machines with solutions (1703.02644v1)

Published 8 Mar 2017 in nlin.CD, cs.ET, and nlin.AO

Abstract: Digital memcomputing machines (DMMs) are non-linear dynamical systems designed so that their equilibrium points are solutions of the Boolean problem they solve. In a previous work [Chaos 27, 023107 (2017)] it was argued that when DMMs support solutions of the associated Boolean problem then strange attractors cannot coexist with such equilibria. In this work, we demonstrate such conjecture. In particular, we show that both topological transitivity and the strongest property of topological mixing are inconsistent with the point dissipative property of DMMs when equilibrium points are present. This is true for both the whole phase space and the global attractor. Absence of topological transitivity is enough to imply absence of chaotic behavior. In a similar vein, we prove that if DMMs do not have equilibrium points, the only attractors present are invariant tori/periodic orbits with periods that may possibly increase with system size (quasi-attractors).

Citations (21)

Summary

We haven't generated a summary for this paper yet.