Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective identifiability criteria for tensors and polynomials (1703.02637v1)

Published 7 Mar 2017 in math.AG and cs.CG

Abstract: A tensor $T$, in a given tensor space, is said to be $h$-identifiable if it admits a unique decomposition as a sum of $h$ rank one tensors. A criterion for $h$-identifiability is called effective if it is satisfied in a dense, open subset of the set of rank $h$ tensors. In this paper we give effective $h$-identifiability criteria for a large class of tensors. We then improve these criteria for some symmetric tensors. For instance, this allows us to give a complete set of effective identifiability criteria for ternary quintic polynomial. Finally, we implement our identifiability algorithms in Macaulay2.

Citations (20)

Summary

We haven't generated a summary for this paper yet.