Papers
Topics
Authors
Recent
Search
2000 character limit reached

Decoupling multivariate polynomials: interconnections between tensorizations

Published 7 Mar 2017 in math.NA | (1703.02493v2)

Abstract: Decoupling multivariate polynomials is useful for obtaining an insight into the workings of a nonlinear mapping, performing parameter reduction, or approximating nonlinear functions. Several different tensor-based approaches have been proposed independently for this task, involving different tensor representations of the functions, and ultimately leading to a canonical polyadic decomposition. We first show that the involved tensors are related by a linear transformation, and that their CP decompositions and uniqueness properties are closely related. This connection provides a way to better assess which of the methods should be favored in certain problem settings, and may be a starting point to unify the two approaches. Second, we show that taking into account the previously ignored intrinsic structure in the tensor decompositions improves the uniqueness properties of the decompositions and thus enlarges the applicability range of the methods.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.