Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random CNFs are Hard for Cutting Planes (1703.02469v1)

Published 7 Mar 2017 in cs.CC

Abstract: The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics; it is used as a testbench for satisfiability algorithms, and average-case hardness over this distribution has also been linked to hardness of approximation via Feige's hypothesis. We prove that any Cutting Planes refutation for random k-SAT requires exponential size, for k that is logarithmic in the number of variables, in the (interesting) regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.

Citations (9)

Summary

We haven't generated a summary for this paper yet.