Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Orthogonalized ALS: A Theoretically Principled Tensor Decomposition Algorithm for Practical Use (1703.01804v2)

Published 6 Mar 2017 in cs.LG and stat.ML

Abstract: The popular Alternating Least Squares (ALS) algorithm for tensor decomposition is efficient and easy to implement, but often converges to poor local optima---particularly when the weights of the factors are non-uniform. We propose a modification of the ALS approach that is as efficient as standard ALS, but provably recovers the true factors with random initialization under standard incoherence assumptions on the factors of the tensor. We demonstrate the significant practical superiority of our approach over traditional ALS for a variety of tasks on synthetic data---including tensor factorization on exact, noisy and over-complete tensors, as well as tensor completion---and for computing word embeddings from a third-order word tri-occurrence tensor.

Summary

We haven't generated a summary for this paper yet.