Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 43 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 225 tok/s Pro
2000 character limit reached

A Correlative Denoising Autoencoder to Model Social Influence for Top-N Recommender System (1703.01760v3)

Published 6 Mar 2017 in cs.IR, cs.LG, and cs.SI

Abstract: In recent years, there are numerous works been proposed to leverage the techniques of deep learning to improve social-aware recommendation performance. In most cases, it requires a larger number of data to train a robust deep learning model, which contains a lot of parameters to fit training data. However, both data of user ratings and social networks are facing critical sparse problem, which makes it not easy to train a robust deep neural network model. Towards this problem, we propose a novel Correlative Denoising Autoencoder (CoDAE) method by taking correlations between users with multiple roles into account to learn robust representations from sparse inputs of ratings and social networks for recommendation. We develop the CoDAE model by utilizing three separated autoencoders to learn user features with roles of rater, truster and trustee, respectively. Especially, on account of that each input unit of user vectors with roles of truster and trustee is corresponding to a particular user, we propose to utilize shared parameters to learn common information of the units that corresponding to same users. Moreover, we propose a related regularization term to learn correlations between user features that learnt by the three subnetworks of CoDAE model. We further conduct a series of experiments to evaluate the proposed method on two public datasets for Top-N recommendation task. The experimental results demonstrate that the proposed model outperforms state-of-the-art algorithms on rank-sensitive metrics of MAP and NDCG.

Citations (75)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.