Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SceneSeer: 3D Scene Design with Natural Language (1703.00050v1)

Published 28 Feb 2017 in cs.GR, cs.CL, and cs.HC

Abstract: Designing 3D scenes is currently a creative task that requires significant expertise and effort in using complex 3D design interfaces. This effortful design process starts in stark contrast to the easiness with which people can use language to describe real and imaginary environments. We present SceneSeer: an interactive text to 3D scene generation system that allows a user to design 3D scenes using natural language. A user provides input text from which we extract explicit constraints on the objects that should appear in the scene. Given these explicit constraints, the system then uses a spatial knowledge base learned from an existing database of 3D scenes and 3D object models to infer an arrangement of the objects forming a natural scene matching the input description. Using textual commands the user can then iteratively refine the created scene by adding, removing, replacing, and manipulating objects. We evaluate the quality of 3D scenes generated by SceneSeer in a perceptual evaluation experiment where we compare against manually designed scenes and simpler baselines for 3D scene generation. We demonstrate how the generated scenes can be iteratively refined through simple natural language commands.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Angel X. Chang (58 papers)
  2. Mihail Eric (14 papers)
  3. Manolis Savva (64 papers)
  4. Christopher D. Manning (169 papers)
Citations (56)

Summary

We haven't generated a summary for this paper yet.