Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Relaxations of Chance Constrained AC Optimal Power Flow (1702.08372v4)

Published 27 Feb 2017 in cs.SY

Abstract: High penetration of renewable energy sources and the increasing share of stochastic loads require the explicit representation of uncertainty in tools such as the optimal power flow (OPF). Current approaches follow either a linearized approach or an iterative approximation of non-linearities. This paper proposes a semidefinite relaxation of a chance constrained AC-OPF which is able to provide guarantees for global optimality. Using a piecewise affine policy, we can ensure tractability, accurately model large power deviations, and determine suitable corrective control policies for active power, reactive power, and voltage. We state a tractable formulation for two types of uncertainty sets. Using a scenario-based approach and making no prior assumptions about the probability distribution of the forecast errors, we obtain a robust formulation for a rectangular uncertainty set. Alternatively, assuming a Gaussian distribution of the forecast errors, we propose an analytical reformulation of the chance constraints suitable for semidefinite programming. We demonstrate the performance of our approach on the IEEE 24 and 118 bus system using realistic day-ahead forecast data and obtain tight near-global optimality guarantees.

Citations (92)

Summary

We haven't generated a summary for this paper yet.