Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Ensemble Prediction for Deep Neural Networks based on Confidence Level (1702.08259v3)

Published 27 Feb 2017 in cs.LG, cs.CV, and stat.ML

Abstract: Ensembling multiple predictions is a widely used technique for improving the accuracy of various machine learning tasks. One obvious drawback of ensembling is its higher execution cost during inference. In this paper, we first describe our insights on the relationship between the probability of prediction and the effect of ensembling with current deep neural networks; ensembling does not help mispredictions for inputs predicted with a high probability even when there is a non-negligible number of mispredicted inputs. This finding motivated us to develop a way to adaptively control the ensembling. If the prediction for an input reaches a high enough probability, i.e., the output from the softmax function, on the basis of the confidence level, we stop ensembling for this input to avoid wasting computation power. We evaluated the adaptive ensembling by using various datasets and showed that it reduces the computation cost significantly while achieving accuracy similar to that of static ensembling using a pre-defined number of local predictions. We also show that our statistically rigorous confidence-level-based early-exit condition reduces the burden of task-dependent threshold tuning better compared with naive early exit based on a pre-defined threshold in addition to yielding a better accuracy with the same cost.

Citations (1)

Summary

We haven't generated a summary for this paper yet.