Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Control of Gene Regulatory Networks with Noisy Measurements and Uncertain Inputs (1702.07652v1)

Published 24 Feb 2017 in q-bio.MN, cs.LG, and stat.ML

Abstract: This paper is concerned with the problem of stochastic control of gene regulatory networks (GRNs) observed indirectly through noisy measurements and with uncertainty in the intervention inputs. The partial observability of the gene states and uncertainty in the intervention process are accounted for by modeling GRNs using the partially-observed Boolean dynamical system (POBDS) signal model with noisy gene expression measurements. Obtaining the optimal infinite-horizon control strategy for this problem is not attainable in general, and we apply reinforcement learning and Gaussian process techniques to find a near-optimal solution. The POBDS is first transformed to a directly-observed Markov Decision Process in a continuous belief space, and the Gaussian process is used for modeling the cost function over the belief and intervention spaces. Reinforcement learning then is used to learn the cost function from the available gene expression data. In addition, we employ sparsification, which enables the control of large partially-observed GRNs. The performance of the resulting algorithm is studied through a comprehensive set of numerical experiments using synthetic gene expression data generated from a melanoma gene regulatory network.

Citations (46)

Summary

We haven't generated a summary for this paper yet.