Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable (1702.07558v1)

Published 24 Feb 2017 in math.CO

Abstract: Listed as No. 53 among the one hundred famous unsolved problems in [J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, Berlin, 2008] is Steinberg's conjecture, which states that every planar graph without 4- and 5-cycles is 3-colorable. In this paper, we show that plane graphs without 4- and 5-cycles are 3-colorable if they have no ext-triangular 7-cycles. This implies that (1) planar graphs without 4-, 5-, 7-cycles are 3-colorable, and (2) planar graphs without 4-, 5-, 8-cycles are 3-colorable, which cover a number of known results in the literature motivated by Steinberg's conjecture.

Summary

We haven't generated a summary for this paper yet.