Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Rates for Kernel-Based Expectile Regression

Published 24 Feb 2017 in stat.ML and cs.LG | (1702.07552v2)

Abstract: Conditional expectiles are becoming an increasingly important tool in finance as well as in other areas of applications. We analyse a support vector machine type approach for estimating conditional expectiles and establish learning rates that are minimax optimal modulo a logarithmic factor if Gaussian RBF kernels are used and the desired expectile is smooth in a Besov sense. As a special case, our learning rates improve the best known rates for kernel-based least squares regression in this scenario. Key ingredients of our statistical analysis are a general calibration inequality for the asymmetric least squares loss, a corresponding variance bound as well as an improved entropy number bound for Gaussian RBF kernels.

Citations (29)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.