Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Unraveling the escape dynamics and the nature of the normally hyperbolic invariant manifolds in tidally limited star clusters (1702.07287v1)

Published 23 Feb 2017 in astro-ph.GA and nlin.CD

Abstract: The escape mechanism of orbits in a star cluster rotating around its parent galaxy in a circular orbit is investigated. A three degrees of freedom model is used for describing the dynamical properties of the Hamiltonian system. The gravitational field of the star cluster is represented by a smooth and spherically symmetric Plummer potential. We distinguish between ordered and chaotic orbits as well as between trapped and escaping orbits, considering only unbounded motion for several energy levels. The Smaller Alignment Index (SALI) method is used for determining the regular or chaotic nature of the orbits. The basins of escape are located and they are also correlated with the corresponding escape time of the orbits. Areas of bounded regular or chaotic motion and basins of escape were found to coexist in the $(x,z)$ plane. The properties of the normally hyperbolic invariant manifolds (NHIMs), located in the vicinity of the index-1 Lagrange points $L_1$ and $L_2$, are also explored. These manifolds are of paramount importance as they control the flow of stars over the saddle points, while they also trigger the formation of tidal tails observed in star clusters. Bifurcation diagrams of the Lyapunov periodic orbits as well as restrictions of the Poincar\'e map to the NHIMs are deployed for elucidating the dynamics in the neighbourhood of the saddle points. The extended tidal tails, or tidal arms, formed by stars with low velocity which escape through the Lagrange points are monitored. The numerical results of this work are also compared with previous related work.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.