Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

First Experiences Optimizing Smith-Waterman on Intel's Knights Landing Processor (1702.07195v1)

Published 23 Feb 2017 in cs.DC and cs.PF

Abstract: The well-known Smith-Waterman (SW) algorithm is the most commonly used method for local sequence alignments. However, SW is very computationally demanding for large protein databases. There exist several implementations that take advantage of computing parallelization on many-cores, FPGAs or GPUs, in order to increase the alignment throughtput. In this paper, we have explored SW acceleration on Intel KNL processor. The novelty of this architecture requires the revision of previous programming and optimization techniques on many-core architectures. To the best of authors knowledge, this is the first KNL architecture assessment for SW algorithm. Our evaluation, using the renowned Environmental NR database as benchmark, has shown that multi-threading and SIMD exploitation reports competitive performance (351 GCUPS) in comparison with other implementations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.